Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

meso-1,2-Diphenylethylenediammonium adipate

Ramasamy Ramasubramanian,^a Murugan Indrani,^a Sudalaiandi Kumaresan,^a* Frank R. Fronczek^b and Bahlul Z. Awen^c

^aDepartment of Chemistry, Manonmaniam Sundaranar University, Tirunelveli 627 012, Tamil Nadu, India, ^bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803 1804, USA, and ^cDepartment of Pharmacy, Al-Fateh University, Tripoli, Libyan Arab Jamahiriya

Correspondence e-mail: skumarmsu@yahoo.com

Received 12 July 2007; accepted 7 August 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.061; wR factor = 0.165; data-to-parameter ratio = 19.2.

In the title molecular salt, $C_{14}H_{18}N_2^{2+} \cdot C_6H_8O_4^{2-}$, both the dication and the dianion lie on inversion centers. There is an approximate 61:39 disorder in the central linkage of the cation. In the crystal structure, the components associate via N-H···O and C-H···O interactions, resulting in $R_2^2(9)$ rings.

Related literature

For related literature, see: Allen (2002); Bruno et al. (2004); Bŭcar et al. (2007); Desiraju (1995); Etter (1990); Ferguson et al. (1992); Khokhar & Lumetta (1989); Kuroda & Mason (1977); Ramasubramanian et al. (2007); Roy et al. (2005).

Experimental

Crystal data

$C_{14}H_{18}N_2^{2+} \cdot C_6H_8O_4^{2-}$	$\gamma = 113.64 \ (2)^{\circ}$
$M_r = 358.43$	V = 454.4 (4) Å ³
Triclinic, P1	Z = 1
a = 6.361 (3) Å	Mo $K\alpha$ radiation
b = 6.931 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 11.820 (5) Å	$T = 100 { m K}$
$\alpha = 105.35 \ (2)^{\circ}$	$0.18 \times 0.17 \times 0.15 \text{ mm}$
$\beta = 92.05 \ (2)^{\circ}$	

Data collection

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.061$ wR(F ²) = 0.165 S = 1.03 2642 reflections	138 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$
2643 reflections	$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

	D 11		D (D II (
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$N1 - H5N \cdots O2^i$	0.91	1.90	2.769 (2)	159
$N1 - H6N \cdot \cdot \cdot O1^{ii}$	0.91	1.82	2.717 (2)	167
N1-H3N···O2 ⁱⁱⁱ	0.91	1.88	2.756 (2)	161
C6-H6···O2 ⁱⁱ	0.95	2.56	3.359 (3)	142
$C7 - H7 \cdot \cdot \cdot O2^{iv}$	0.95	2.53	3.421 (3)	157
C10−H10···O1	0.95	2.42	3.249 (3)	146

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) x, y - 1, z; (iv) x + 1, y - 1, z.

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The purchase of the diffractometer was made possible by grant No. LEQSF(1999-2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2481).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Bruno, G., Rotondo, A., De Luca, L., Sammartano, S. & Nicoló, F. (2004). Acta Cryst. C60, o287-o289.
- Bŭcar, D.-K., Henry, R. F., Lou, X., Borchardt, T. B. & Zhang, G. G. Z. (2007). Chem. Commun. pp. 525-527.
- Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Ferguson, G., Gallagher, J. F., Fullwood, R. & Parker, D. (1992). Acta Cryst. C48. 2273-2275
- Khokhar, A. R. & Lumetta, G. J. (1989). J. Coord. Chem. 19, 321-330.
- Kuroda, R. & Mason, S. F. (1977). J. Chem. Soc. Dalton Trans. pp. 1016-1020. Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Ramasubramanian, R., Kumaresan, S., Sridhar, B., David Stephen, A. & Kumaradhas, P. (2007). Acta Cryst. E63, o3034-o3035.
- Roy, S., Singh, D. D. & Vijayan, M. (2005). Acta Cryst. B61, 89-95.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o3800 [doi:10.1107/S1600536807038937]

meso-1,2-Diphenylethylenediammonium adipate

R. Ramasubramanian, M. Indrani, S. Kumaresan, F. R. Fronczek and B. Z. Awen

Comment

From the viewpoint of crystal engineering (Desiraju, 1995), adipic acid is a useful species for constructing crystalline architectures because of its proton donating capability to generate hydrogen bonding accepting sites (Roy *et al.*, 2005, Bu^{*} car *et al.*, 2007), leading to a solid state array with defined dimensionality.

The survey of Khokhar & Lumetta (1989) suggests that *meso*-1,2-diphenylethylenediamine might be useful as a chemotherapeutic agent. This species and its organic and inorganic salts or complexes can develop supramolecular structures by self assembly of components which contain two hydrogen bonding donor sites (Ferguson *et al.*, 1992; Kuroda & Mason, 1977).

As part of our ongoing studies of this species (Ramasubramanian *et al.*,2007), we now report the synthesis and structure of the title compound, (I), (Fig. 1). Double proton transfer from acid to amine has occurred. Both anion and cation are generated by inversion and there is a 61:39 disorder in the central fragment of the cation.

The C—O bond lengths in the adipate moiety indicate delocalization of charge [C—O = 1.244(1)Å and 1.283(1)Å] as they are intermediate between single and double bond lengths (Bruno *et al.*, 2004; Allen, 2002).

The species interact by way of N—H···O and C—H···O interactions (Table 1, Fig. 2) such that each cation forms a $R_2^2(9)$ ring (Etter, 1990) with its neighbouring adipate anion. Several other hydrogen-bonded rings are apparent in the crystal packing and they are designated as $R_4^4(28)$, $R_2^3(10) R_2^4(12)$, and $R_2^1(6)$. The $R_4^4(28)$ ring forms an infinite ladder in the crystal by N—H···O interactions (Fig. 3).

Experimental

Stoichiometric quantities of adipic acid and *meso*-1,2-diphenylethylene diamine were separately dissolved in methanol. These solutions were warmed to 343 K and slowly mixed in a 1:1 molar ratio of acid to amine. The resulting mixture was kept at room temperature for slow evaporation of the solvent. Colourless crystals of (I) appeared after two days and were washed with water and dried *in vacuo*.

Refinement

The H atoms were placed in idealized positions (C—H = 0.95–1.00 Å, N—H = 0.91 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(N)$. In the disordered central portion of the cation, the populations of the two conformers [0.613 (8):0.387 (8)] were contrained to sum to unity.

Figures

Fig. 1. A view of (I) with displacement ellipsoids shown at the 50% probability level (arbitrary spheres for the H aotms), and only the major orientation of the cation shown. Symmetry codes: (a) -x, 1 - y, -z; (b) 1 - x, 1 - y, 1 - z.

Fig. 2. A view of (I) showing the hydrogen bonds as dashed lines.

Fig. 3. The hydrogen-bonding interactions of (I) in the crystal packing.

meso-1,2-Diphenylethylenediammonium adipate

Crystal data

$C_{14}H_{18}N_2^{2+}C_6H_8O_4^{2-}$	Z = 1
$M_r = 358.43$	$F_{000} = 192$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.310 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation $\lambda = 0.71073$ Å
a = 6.361 (3) Å	Cell parameters from 2369 reflections
b = 6.931 (3) Å	$\theta = 2.5 - 30.0^{\circ}$
c = 11.820 (5) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\alpha = 105.35 \ (2)^{\circ}$	T = 100 K
$\beta = 92.05 \ (2)^{\circ}$	Shard, colourless
$\gamma = 113.64 \ (2)^{\circ}$	$0.18 \times 0.17 \times 0.15 \text{ mm}$
$V = 454.4 (4) \text{ Å}^3$	

Data collection

Nonius KappaCCD diffractometer	1727 reflections with $I > 2\sigma(I)$

Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.040$
Monochromator: graphite	$\theta_{\rm max} = 30.1^{\circ}$
T = 100 K	$\theta_{\min} = 3.3^{\circ}$
ω scans with κ offsets	$h = -8 \rightarrow 8$
Absorption correction: none	$k = -9 \rightarrow 9$
8038 measured reflections	$l = -16 \rightarrow 16$
2643 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.061$	$w = 1/[\sigma^2(F_o^2) + (0.0671P)^2 + 0.226P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.165$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.03	$\Delta \rho_{max} = 0.32 \text{ e } \text{\AA}^{-3}$
2643 reflections	$\Delta \rho_{min} = -0.35 \text{ e } \text{\AA}^{-3}$
138 parameters	Extinction correction: SHELXL97, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.029 (9)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
01	0.2968 (2)	0.6691 (2)	0.29572 (11)	0.0219 (3)	
O2	0.0766 (2)	0.8389 (2)	0.37116 (10)	0.0222 (3)	
C1	0.1389 (3)	0.7285 (3)	0.28460 (15)	0.0172 (4)	
C2	0.0067 (3)	0.6698 (3)	0.16156 (15)	0.0189 (4)	
H2A	0.0321	0.8088	0.1441	0.023*	
H2B	-0.1614	0.5914	0.1631	0.023*	
C3	0.0716 (3)	0.5271 (3)	0.06021 (14)	0.0204 (4)	
H3A	0.0472	0.3874	0.0767	0.024*	
H3B	0.2387	0.6055	0.0564	0.024*	

supplementary materials

N1	0.3377 (3)	0.2390 (2)	0.54090 (14)	0.0210 (4)	
H1N	0.2729	0.3005	0.5989	0.031*	0.613 (8)
H2N	0.4619	0.2284	0.5746	0.031*	0.613 (8)
H3N	0.2306	0.1017	0.4977	0.031*	0.613 (8)
H4N	0.3499	0.1461	0.4735	0.031*	0.387 (8)
H5N	0.1921	0.1784	0.5588	0.031*	0.387 (8)
H6N	0.4440	0.2603	0.6019	0.031*	0.387 (8)
C4A	0.4175 (5)	0.3837 (5)	0.4595 (3)	0.0162 (9)	0.613 (8)
H4A	0.2786	0.3923	0.4229	0.019*	0.613 (8)
C5A	0.5268 (8)	0.2904 (7)	0.3605 (3)	0.0156 (8)	0.613 (8)
C4B	0.3833 (8)	0.4618 (8)	0.5214 (5)	0.0158 (14)	0.387 (8)
H4B	0.2628	0.4322	0.4545	0.019*	0.387 (8)
C5B	0.6303 (13)	0.3637 (10)	0.3729 (4)	0.0150 (12)	0.387 (8)
C6	0.7312 (4)	0.2447 (3)	0.38574 (18)	0.0350 (5)	
Н6	0.8136	0.2963	0.4642	0.042*	
C7	0.7970 (3)	0.1269 (3)	0.29318 (16)	0.0222 (4)	
H7	0.9117	0.0774	0.3076	0.027*	
C8	0.6942 (4)	0.0812 (4)	0.17879 (18)	0.0352 (5)	
H8	0.7372	-0.0020	0.1139	0.042*	
C9	0.5293 (4)	0.1554 (3)	0.15777 (18)	0.0303 (5)	
Н9	0.4608	0.1242	0.0785	0.036*	
C10	0.4644 (4)	0.2733 (4)	0.25008 (18)	0.0314 (5)	
H10	0.3718	0.3446	0.2340	0.038*	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
01	0.0225 (7)	0.0251 (7)	0.0179 (6)	0.0129 (6)	0.0003 (5)	0.0023 (5)
O2	0.0251 (7)	0.0265 (7)	0.0134 (6)	0.0137 (6)	0.0021 (5)	-0.0004 (5)
C1	0.0178 (8)	0.0164 (8)	0.0152 (8)	0.0056 (7)	0.0028 (6)	0.0042 (6)
C2	0.0194 (9)	0.0215 (8)	0.0144 (8)	0.0099 (7)	0.0013 (6)	0.0014 (6)
C3	0.0211 (9)	0.0246 (9)	0.0140 (8)	0.0109 (8)	0.0014 (7)	0.0020 (7)
N1	0.0176 (7)	0.0203 (7)	0.0240 (8)	0.0060 (6)	0.0016 (6)	0.0089 (6)
C4A	0.0167 (14)	0.0177 (14)	0.0126 (17)	0.0073 (12)	0.0018 (11)	0.0022 (12)
C5A	0.0159 (19)	0.0112 (16)	0.0156 (15)	0.0046 (14)	0.0025 (14)	-0.0004 (12)
C4B	0.018 (2)	0.019 (2)	0.014 (3)	0.0102 (19)	0.0033 (17)	0.006 (2)
C5B	0.019 (3)	0.012 (3)	0.008 (2)	0.004 (2)	0.002 (2)	-0.0007 (19)
C6	0.0673 (16)	0.0301 (10)	0.0156 (9)	0.0320 (11)	-0.0003 (9)	0.0026 (8)
C7	0.0203 (9)	0.0239 (9)	0.0235 (9)	0.0101 (8)	0.0059 (7)	0.0074 (7)
C8	0.0468 (14)	0.0465 (13)	0.0190 (10)	0.0334 (12)	0.0045 (9)	-0.0013 (9)
C9	0.0374 (12)	0.0315 (11)	0.0199 (9)	0.0199 (10)	-0.0031 (8)	-0.0029 (8)
C10	0.0459 (13)	0.0395 (11)	0.0295 (11)	0.0319 (11)	0.0193 (9)	0.0196 (9)

Geometric parameters (Å, °)

O1—C1	1.244 (2)	C4A—H4A	1.0000
O2—C1	1.283 (2)	C5A—C10	1.311 (4)
C1—C2	1.521 (2)	C5A—C6	1.494 (4)

C2—C3	1.523 (2)	C4B—C4B ⁱⁱ	1.518 (9)
C2—H2A	0.9900	C4B—C5B ⁱⁱ	1.524 (8)
C2—H2B	0.9900	C4B—H4B	1.0000
C3—C3 ⁱ	1.532 (3)	C5B—C6	1.264 (6)
С3—НЗА	0.9900	C5B—C4B ⁱⁱ	1.524 (8)
С3—Н3В	0.9900	C5B—C10	1.579 (6)
N1—C4A	1.525 (3)	C6—C7	1.368 (3)
N1—C4B	1.535 (5)	С6—Н6	0.9500
N1—H1N	0.9100	С7—С8	1.378 (3)
N1—H2N	0.9100	С7—Н7	0.9500
N1—H3N	0.9100	C8—C9	1.382 (3)
N1—H4N	0.9100	C8—H8	0.9500
N1—H5N	0.9100	C9—C10	1.364 (3)
N1—H6N	0.9100	С9—Н9	0.9500
C4A—C5A	1.513 (5)	C10—H10	0.9500
C4A—C4A ⁱⁱ	1.540 (6)		
01—C1—O2	124.40 (16)	C4A ⁱⁱ —C4A—H4A	108.3
O1—C1—C2	119.49 (15)	C10—C5A—C6	117.1 (3)
O2—C1—C2	116.11 (15)	C10—C5A—C4A	120.7 (3)
C1—C2—C3	115.80 (15)	C6—C5A—C4A	121.6 (3)
C1—C2—H2A	108.3	C4B ⁱⁱ —C4B—C5B ⁱⁱ	112.9 (6)
С3—С2—Н2А	108.3	C4B ⁱⁱ —C4B—N1	106.0 (5)
C1—C2—H2B	108.3	C5B ⁱⁱ —C4B—N1	115.8 (4)
C3—C2—H2B	108.3	C4B ⁱⁱ —C4B—H4B	107.2
H2A—C2—H2B	107.4	C5B ⁱⁱ —C4B—H4B	107.2
C2—C3—C3 ⁱ	112.47 (18)	N1—C4B—H4B	107.2
С2—С3—НЗА	109.1	C6—C5B—C4B ⁱⁱ	121.6 (4)
C3 ⁱ —C3—H3A	109.1	C6—C5B—C10	114.3 (4)
С2—С3—Н3В	109.1	C4B ⁱⁱ —C5B—C10	122.0 (4)
C3 ⁱ —C3—H3B	109.1	C5B—C6—C7	123.0 (3)
НЗА—СЗ—НЗВ	107.8	C7—C6—C5A	118.5 (2)
C4A—N1—H1N	109.5	С5В—С6—Н6	110.9
C4A—N1—H2N	109.5	С7—С6—Н6	120.8
H1N—N1—H2N	109.5	С5А—С6—Н6	120.8
C4A—N1—H3N	109.5	C6—C7—C8	119.01 (18)
H1N—N1—H3N	109.5	С6—С7—Н7	120.5
H2N—N1—H3N	109.5	С8—С7—Н7	120.5
C4B—N1—H4N	109.5	C7—C8—C9	120.51 (18)
C4B—N1—H5N	109.5	С7—С8—Н8	119.7
H4N—N1—H5N	109.5	С9—С8—Н8	119.7
C4B—N1—H6N	109.5	C10—C9—C8	120.41 (19)
H4N—N1—H6N	109.5	С10—С9—Н9	119.8
H5N—N1—H6N	109.5	С8—С9—Н9	119.8
C5A—C4A—N1	112.2 (2)	C5A—C10—C9	121.5 (2)
C5A—C4A—C4A ⁱⁱ	113.4 (4)	C9—C10—C5B	114.8 (3)

supplementary materials

N1—C4A—C4A ⁱⁱ	106.2 (3)	C5A—C10—H10	119.3				
C5A—C4A—H4A	108.3	С9—С10—Н10	119.3				
N1—C4A—H4A	108.3	C5B-C10-H10	120.9				
O1—C1—C2—C3	3.6 (2)	C10C5AC6C7	-19.3 (5)				
O2—C1—C2—C3	-176.46 (15)	C4A—C5A—C6—C7	169.2 (3)				
C1—C2—C3—C3 ⁱ	179.22 (19)	C5B—C6—C7—C8	-19.5 (5)				
C4B—N1—C4A—C5A	168.8 (5)	C5A—C6—C7—C8	8.8 (4)				
C4B—N1—C4A—C4A ⁱⁱ	44.4 (4)	C6—C7—C8—C9	0.8 (3)				
N1-C4A-C5A-C10	131.7 (3)	C7—C8—C9—C10	-0.6 (4)				
C4A ⁱⁱ —C4A—C5A—C10	-108.0 (4)	C6—C5A—C10—C9	20.1 (5)				
N1—C4A—C5A—C6	-57.1 (4)	C4A—C5A—C10—C9	-168.3 (3)				
C4A ⁱⁱ —C4A—C5A—C6	63.2 (5)	C6—C5A—C10—C5B	-59.2 (7)				
C4A—N1—C4B—C4B ⁱⁱ	-45.1 (4)	C4A—C5A—C10—C5B	112.4 (8)				
C4A—N1—C4B—C5B ⁱⁱ	-171.2 (6)	C8—C9—C10—C5A	-10.8 (4)				
C4B ⁱⁱ —C5B—C6—C7	-163.5 (4)	C8—C9—C10—C5B	14.2 (4)				
C10-C5B-C6-C7	32.9 (7)	C6C5BC10C5A	82.6 (8)				
C4B ⁱⁱ —C5B—C6—C5A	109.4 (10)	C4B ⁱⁱ —C5B—C10—C5A	-80.8 (8)				
C10C5BC5A	-54.1 (6)	C6—C5B—C10—C9	-30.0 (6)				
C10-C5A-C6-C5B	88.3 (8)	C4B ⁱⁱ —C5B—C10—C9	166.5 (4)				
C4A—C5A—C6—C5B	-83.2 (7)						
Symmetry codes: (i) $-x$, $-y+1$, $-z$; (ii) $-x+1$, $-y+1$, $-z+1$.							

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A				
N1—H5N···O2 ⁱⁱⁱ	0.91	1.90	2.769 (2)	159				
N1—H6N····O1 ⁱⁱ	0.91	1.82	2.717 (2)	167				
N1—H3N····O2 ^{iv}	0.91	1.88	2.756 (2)	161				
C6—H6···O2 ⁱⁱ	0.95	2.56	3.359 (3)	142				
C7—H7···O2 ^v	0.95	2.53	3.421 (3)	157				
C10—H10…O1	0.95	2.42	3.249 (3)	146				
Symmetry codes: (iii) $-x$, $-y+1$, $-z+1$; (ii) $-x+1$, $-y+1$, $-z+1$; (iv) x , $y-1$, z ; (v) $x+1$, $y-1$, z .								

